Tutorial Notes 2

1. Find the region represented by the following integral and calculate the integral:

$$
\int_{-1}^{0} \int_{-2 x}^{1-x} \mathrm{~d} y \mathrm{~d} x+\int_{0}^{2} \int_{-x / 2}^{1-x} \mathrm{~d} y \mathrm{~d} x .
$$

Solutions:

The region is as follows:

From geometric meaning, the area is

$$
\frac{1 \times 1}{2}+\frac{1 \times 2}{2}=\frac{3}{2} .
$$

From the integral, the area is

$$
\int_{-1}^{0}(1+x) \mathrm{d} x+\int_{0}^{2}\left(1-\frac{x}{2}\right) \mathrm{d} x=\frac{1}{2}+1=\frac{3}{2} .
$$

2. Find the area of the region $\Omega: 0 \leq x \leq 2,2-x \leq y \leq \sqrt{4-x^{2}}$ using Fubini's theorem and geometry.

Solutions:

The region is as follows:

The area is

$$
\begin{aligned}
\int_{0}^{2} \int_{2-x}^{\sqrt{4-x^{2}}} \mathrm{~d} y \mathrm{~d} x & =\int_{0}^{2}\left[\sqrt{4-x^{2}}-(2-x)\right] \mathrm{d} x \\
& =\int_{0}^{2} \sqrt{4-x^{2}} \mathrm{~d} x-\int_{0}^{2}(2-x) \mathrm{d} x \\
& =\int_{0}^{\pi / 2} 2 \cos \theta \cdot 2 \cos \theta \mathrm{~d} \theta+\left.\frac{(2-x)^{2}}{2}\right|_{0} ^{2} \\
& =\int_{0}^{\pi / 2} 2(\cos 2 \theta+1) \mathrm{d} \theta-2 \\
& =\pi-2 .
\end{aligned}
$$

From geometry, the area is

$$
\frac{1}{4} \cdot \pi \cdot 2^{2}-\frac{1}{2} \cdot 2^{2}=\pi-2
$$

3. Find the area of the region $\Omega: 1 \leq r \leq 1+\cos \theta$.

Solutions:

The area is

$$
\begin{aligned}
\int_{-\pi / 2}^{\pi / 2} \int_{1}^{1+\cos \theta} r \mathrm{~d} r \mathrm{~d} \theta & =\int_{-\pi / 2}^{\pi / 2} \frac{(1+\cos \theta)^{2}-1}{2} \mathrm{~d} \theta \\
& =\int_{-\pi / 2}^{\pi / 2} \frac{2 \cos \theta+\cos ^{2} \theta}{2} \mathrm{~d} \theta \\
& =\int_{-\pi / 2}^{\pi / 2}\left(\cos \theta+\frac{1+\cos 2 \theta}{4}\right) \mathrm{d} \theta \\
& =2+\frac{\pi}{4} .
\end{aligned}
$$

4. Find the area of one leaf of the rose $r=12 \cos 3 \theta$.

Solutions:

The area is

$$
\begin{aligned}
\int_{-\pi / 6}^{\pi / 6} \int_{0}^{12 \cos 3 \theta} r \mathrm{~d} r \mathrm{~d} \theta & =\int_{-\pi / 6}^{\pi / 6} \frac{(12 \cos 3 \theta)^{2}}{2} \mathrm{~d} \theta \\
& =\int_{-\pi / 6}^{\pi / 6} 72 \cos ^{2} 3 \theta \mathrm{~d} \theta \\
& =\int_{-\pi / 6}^{\pi / 6} 36(1+\cos 6 \theta) \mathrm{d} \theta \\
& =12 \pi .
\end{aligned}
$$

5. For the region $\Omega: 0 \leq r \leq f(\theta), \alpha \leq \theta \leq \beta$, where $f(\theta) \geq 0$ for $\alpha \leq \theta \leq \beta$, prove
that the area is

$$
\int_{\alpha}^{\beta} \frac{f^{2}(\theta)}{2} \mathrm{~d} \theta
$$

Solutions:

The area is

$$
\int_{\alpha}^{\beta} \int_{0}^{f(\theta)} r \mathrm{~d} r \mathrm{~d} \theta=\int_{\alpha}^{\beta} \frac{f^{2}(\theta)}{2} \mathrm{~d} \theta
$$

